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Motivation

* Machine Learning (ML) algorithms have transformed the methods of data
analysis, image pattern recognition, and math modeling.

* Artificial Neural Networks (ANNs) are among the most talked about techniques in
the ML family with a wide range of applications.

* Applications of ANNs
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Motivation

e Active research areas:

* Detector transient noise (glitch) classification.
e Real-time Binary Black Hole (BBH) Binary Neutron Star (BNS) merger event detection.

* BBH/BNS merger event forecasting.
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M. Zevin and et al., “Gravity spy: integrating advanced ligo detector characterization,

machine learning, and citizen science,” Classical and Quantum Gravity, vol. 34, no. 6, p.

064003, 2017
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A Convolutional Neural Network (CNN) in merger
event detection, classification. (Plamen G. Krastev)

Krastev, P. G. (2020). Real-time detection of gravitational waves from binary
neutron stars using Artificial Neural Networks. Physics Letters B, 803, 135330.
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o Spectrogram of a simulated BNS merger signal (W.
Wei and et al.)
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Objective

* Design a transform method that produces chirp-rate enhanced spectrograms to
improve spectrogram classification networks’ performance in low signal-to-noise
ratio BBH, BNS merger signal detection and forecasting.
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Current Detection Techniques

BBH Chirp Signal Detection

Chirp signal: ~ changing frequency

BBH Merger Process and Waveform
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Technique 1: Templated Search — Matched Filtering

PyCBC Matched Filtering Result of GW150914 Signal from the Hanford Detector

‘I —— Data
TEmplate

of M AP A IW" f"\rf\/\fb\, LP]\,f N\ W\/d\ I ‘fv\ﬁfu \f\ﬁvﬂ w\N\l\v
)

020 025 030 035 040 045 0.50
Time (s) +1.126259462e9

Hanford detector signal of BBH merger event GW150914 (September 14 2015,
09:50:45 UTC) plotted against the matched waveform template in PyCBC.

[Technique 2: Non-templated Search — Burst Search ]
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The spectrogram of an unknown event recorded by the Livingston detector at
GPS time 931158360 (July 8 2009, 07:05:45 UTC), generated by the coherence
waveBurst pipeline.
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Existing Spectrogram Generation Methods
Constant Q Transform of GW 150914

500

* Short-time Fourier Transform (STFT)
* Gabor Transform (GT)

e Constant Q Transform (CQT)

* S (Stockwell) Transform (ST)

Frequency [Hz]
15
o
Normalised energy

27 24 21 -18 -15 -12 9 6 -3 0
Time [seconds] from 2017-08-17 12:41:04.4 UTC (1187008882.4)

S Transform of a simulated BBH merger

S Transform Spectrogram Normalized Value

1000
e All use the Fourier transform as the 800
foundation.

* Only decompose the relationship between >
time and frequency. 400

* The defining characteristic of a BBH merger
signal, the chirp, is abandoned. e
0

0 2000 4000 6000 8000
Simulated merger m1 = m2 =, normalized amplitude 1, injected

to Gaussian noise of amplitude 10. 6
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Obtaining the Chirp-rate Information

Fourier Transform (FT)
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Matching the input signal x(t) to
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Obtaining the Chirp-rate Information

Linear Chirp Transform (LCT)
DLCT of a 4-Component Signal
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Discrete Linear Chirp Transform (DLCT) of a 4-component linear chirp signal.
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The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)
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A 2D representation by taking an orthogonal
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An Alternative Definition using the Convolution Theorem
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Sram

Results

The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)

Hjy(y,7,Q) = / H(Q+ )G (7,9, a)e* ™ da,
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Frequency (Hz)

Results

The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)
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Classification Accuracy using Inception V3 Network

Classification Accuracy vs. Signal Peak SNR 98 o 5 g c. Confusion Matrix Difference
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*On average 14% better performance for simulated BBH merger signals with SNR 6-10.
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Conclusions:

The JCTFT decomposes time-series signals into chirp rate, time and frequency,
and establishes the relationship between the three quantities.

Improved neural network classification performance using simulated BBH
merger signals with SNR 6-10.

The JCTFT and methods extended from it pave the way for new three-

dimensional chirp signal search and analysis techniques, using either classical
methods or machine learning algorithms.

Next,

An improved chirp signal peak detection algorithm for more accurate chirp-rate
estimation.

Probe the potential of detector glitch classification and analysis using the JCTFT.
Investigate the JCTFT periodicity and signal peak characteristics.

Investigate the effects of these methods in low-latency ANN BBH merger

detection pipelines.
16



Western Our Team

UNIVERSITY - CANADA

16



	Slide 1: A Joint-Chirp-rate-Time-Frequency Transform for Binary Black Hole Merger Signal Detection using Spectrograms
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Objective
	Slide 5: Current Detection Techniques
	Slide 6: Existing Spectrogram Generation Methods
	Slide 7: Obtaining the Chirp-rate Information
	Slide 8: Obtaining the Chirp-rate Information
	Slide 9: The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)
	Slide 10: An Alternative Definition using the Convolution Theorem
	Slide 11: The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)
	Slide 12: The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)
	Slide 13: Classification Accuracy using Inception V3 Network
	Slide 14
	Slide 15

